Universit`
a degli Studi di Siena
FACOLT`
A DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea Triennale in Fisica e Tecnologie Avanzate
Tesi di Laurea
18 Aprile 2011
A Large GEM detector prototype
Test-beam results and analysis
Candidato:
Elena Graverini
Relatore:
Prof. Nicola Turini
Anno Accademico 2009–2010
Chapter 1
E=V
d
E V d
25µm
500 ÷600V
G15÷30
G8,000
Ed
EtEi
gdgtgi
gd= 3mm gt1= 2mm gt2= 2mm gi= 2mm
EMIN
d= 2.7kV
cm EMIN
t1= 4.0kV
cm EMIN
t2= 4.0kV
cm EMIN
i= 4.0kV
cm
EMAX
d= 3.0kV
cm EMAX
t1= 4.4kV
cm EMAX
t2= 4.4kV
cm EMAX
i= 4.4kV
cm
Eγ11.6eV
Wi= 7.7eV
dE
dx =2πNz2e4
mc2
Z
A
ρ
β2ln 2mc2β2EM
I2(1 β2)2β2
N Z A ρ I
z
β c EM
µ+
MeV
2MeV ·cm2
g
I=e
tdrif t
tdrif t =li
vdrif t
li
vdrif t vdrif t
σ(t)1
n·vdrif t
n
dE
dx
βγ =p
Mc
70/30 60/20/20
70/30
70/30
60/20/20
Ed=Et= 3 kV
cm
2000cm266 ·66cm2
depth
width
50÷70cm 66x66cm2
25µm
2mm
3.5mm
10M
0.25cm2
6cm2
G=IOU T
qf
q
q
q=ne
e n
f
n
n290
Divider HV [kV]
3.6 3.8 4.0 4.2 4.4
LG Gain
3
10
4
10
5
10
LG left side
LG right side [nA-meter wrong offset]
Exponential fit (left)
Divider current [uA]
660 680 700 720 740 760 780 800 820
q IOU T f
G f
IOU T
830µA
Chapter 2
VOU T IIN
3.3mV
0,045fC 281e
1clk
VT1VT2
VT1= 0 VT2=variable
VT1=variable VT1= 0
MSP L = 1clk
VT H =VT2VT1
th =60ds ds
lat = 17clk
lat = 18clk
amplitude
width
1 8
n
1n8
3mm
60ns
10,000
th 35
40ds
Chapter 3
450GeV/c
π150GeV/c
τ=
(2,6033 ±0,0005) 108s
Γi/Γ = (99,98770 ±0,00004)%
π µ+νµ
0,8kHz µ
38kHz π
π
3
3 10 ·10cm2
x y
391µm
x=σ(G1G2)
2= 0.0915mm
G1G2
0.0915mm
pitch
12 = 0.113mm
x y
x y
120
z
x z
χ2q m
x
y
nact
nexp
rHIT rT RK
effrad
nact
|rHIT rT RK | ≤ effrad =nact =nact + 1
χ2<10
x y
x < 10channels y <
10channels
x
0.4mm
0.4·posCL posCL
x
x y
x699 700 701
x y
Chapter 4
70/30
G= 2 ·106e0.026·I
Ilef t = (Iright +ξ)µA
0ξ4.3
(V) (µA)
4,600 764.8 1,930
4,700 781.5 3,021
4,800 798.2 4,767
4,900 815.1 7,403
5,000 831.3 11,684
5,050 840.1 15,100
5,100 847.9 18,439
5,150 856.7 22,947
5,200 865.1 29,737
5,250 873.4 37,206
5,300 881.4 45,599
5,350 890.2 57,104
I > 750µA 70/30
Divider HV [kV]
4.6 4.7 4.8 4.9 5 5.1 5.2
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
High Voltage scan (point A)
th -100 DAC steps | MSPL 4clk
th -80 DAC steps | MSPL 4clk
th -60 DAC steps | MSPL 4clk
th -40 DAC steps | MSPL 4clk
th -100 DAC steps | MSPL 3clk
th -80 DAC steps | MSPL 3clk
th -60 DAC steps | MSPL 3clk
th -40 DAC steps | MSPL 3clk
Divider current [uA]
770 780 790 800 810 820 830 840 850 860 870
Divider HV [kV]
4.6 4.7 4.8 4.9 5 5.1 5.2
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
High Voltage scan (point P)
Threshold -100 DAC steps
Threshold -80 DAC steps
Threshold -60 DAC steps
Threshold -40 DAC steps
Divider current [uA]
770 780 790 800 810 820 830 840 850 860 870
MSP L = 4clk
40
60ds 80ds 100ds
MSP L = 3clk
95% ε
40ds 60ds ID= 817µA
ID= 850µA ε 98% MSP L = 3clk
MSP L = 4clk
ID866µA ε > 95% ID= 850µA th =40ds
th =60ds
70/30
60/20/20
Divider HV [kV]
4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Gas Mixture comparison
Ar-CO2 70/30
Ar-CO2-CF4 60/20/20
Divider current [uA]
770 780 790 800 810 820 830 840 850 860 870 880
60/20/20
I850µA
th = 90ds
Negative threshold [VFAT2 DAC steps = 3.3mV = 0.045fC]
20 40 60 80 100 120 140 160 180 200 220 240
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
[MSPL 4clk, lat 14clk]
Threshold scan (point A)
A)µHV -5.15kV (859
A)µHV -5.10kV (851
A)µHV -5.05kV (841
A)µHV -5.00kV (834
Negative threshold [VFAT2 DAC steps = 3.3mV = 0.045fC]
20 40 60 80 100 120 140 160 180 200 220 240
LG efficiency
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
[MSPL 4clk, lat 14clk]
Threshold scan (point A)
A)µHV -5.15kV (859
A)µHV -5.10kV (851
A)µHV -5.05kV (841
A)µHV -5.00kV (834
Negative threshold [VFAT2 DAC steps = 3.3mV = 0.045fC]
20 40 60 80 100 120 140 160 180 200 220 240
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
[MSPL 4clk, lat 14clk]
Threshold scan (point P)
HV -5.15kV (859uA)
HV -5.10kV (851uA)
HV -5.05kV (841uA)
HV -5.00kV (834uA)
Negative threshold [VFAT2 DAC steps = 3.3mV = 0.045fC]
20 40 60 80 100 120 140 160 180 200 220 240
LG efficiency
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
[MSPL 4clk, lat 14clk]
Threshold scan (point P)
HV -5.15kV (859uA)
HV -5.10kV (851uA)
HV -5.05kV (841uA)
HV -5.00kV (834uA)
ε100%
th < 30ds
EQIN QIN
EMIP QIN QDET ECT ED QIN
QIN
9mm
σ300 ÷400µm
3mm QIN 28
E
f(λ) = 1
2πe1
2(λ+eλ), λ =EEMP
KZ
A
ρ
β2X
EMP
λ
EMP
F(VT H ) = G·
VT H
f(λ)
G
χ2
χ2
n
550 n1050
QBIN 0,045fC 280
nMAX
steps 10% 230ds
nMAX
steps = 256
Threshold [VFAT2 DAC step Bin]
0 50 100 150 200 250
Efficiency
0.70
0.75
0.80
0.85
0.90
0.95
1.00
/ ndf
2
χ 1.668 / 9
Prob 0.9957
p0 0.00215± 0.9902
p1 0± 1050
p2 2274± 3.998e+04
p3 0± 120
/ ndf
2
χ 1.668 / 9
Prob 0.9957
p0 0.00215± 0.9902
p1 0± 1050
p2 2274± 3.998e+04
p3 0± 120
Efficiency vs Threshold
/ ndf
2
χ 4.742 / 9
Prob 0.8562
p0 0.002489± 0.9908
p1 0± 1050
p2 1228± 3.386e+04
p3 0± 120
/ ndf
2
χ 4.742 / 9
Prob 0.8562
p0 0.002489± 0.9908
p1 0± 1050
p2 1228± 3.386e+04
p3 0± 120
/ ndf
2
χ 4.742 / 9
Prob 0.8562
p0 0.002489± 0.9908
p1 0± 1050
p2 1228± 3.386e+04
p3 0± 120
/ ndf
2
χ 2.119 / 9
Prob 0.9894
p0 0.003086± 0.995
p1 0± 1050
p2 716.7± 2.826e+04
p3 0± 120
/ ndf
2
χ 2.119 / 9
Prob 0.9894
p0 0.003086± 0.995
p1 0± 1050
p2 716.7± 2.826e+04
p3 0± 120
/ ndf
2
χ 2.119 / 9
Prob 0.9894
p0 0.003086± 0.995
p1 0± 1050
p2 716.7± 2.826e+04
p3 0± 120
/ ndf
2
χ 2.945 / 9
Prob 0.9664
p0 0.003474± 0.9987
p1 0± 1050
p2 573.3± 2.579e+04
p3 0± 120
/ ndf
2
χ 2.945 / 9
Prob 0.9664
p0 0.003474± 0.9987
p1 0± 1050
p2 573.3± 2.579e+04
p3 0± 120
/ ndf
2
χ 2.945 / 9
Prob 0.9664
p0 0.003474± 0.9987
p1 0± 1050
p2 573.3± 2.579e+04
p3 0± 120
HV = -5.15 kV
HV = -5.10 kV
HV = -5.05 kV
HV = -5.00 kV
50ds
17
[10clk, 19clk]
17clk
MSP L 3clk
60ns
25ns
MSP L = 4clk 40ds < th < 100ds
MSP L = 3clk 40ds th 60ds
kHz
>1clk
MSP L
MSP L 100ds
40ds µ
Latency [clock cycles = 25ns steps]
10 11 12 13 14 15 16 17 18 19
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
A, th=-60steps]µ[I=859
Latency scan @ Ar-CO2 70/30
MSPL 4clk | Threshold -100 DAC steps
MSPL 4clk | Threshold -80 DAC steps
MSPL 4clk | Threshold -60 DAC steps
MSPL 4clk | Threshold -40 DAC steps
MSPL 2clk | Threshold -100 DAC steps
MSPL 2clk | Threshold -80 DAC steps
MSPL 2clk | Threshold -60 DAC steps
MSPL 2clk | Threshold -40 DAC steps
th 40ds
MSP L = 3clk th = 40ds
th =40ds
MSP L = 2clk
MSP L = 4clk
0th > 40ds
Entries 6389
Mean 0.1473± 383.1
RMS 0.1042± 11.76
Time [ns]
320 340 360 380 400 420
Counts
0
20
40
60
80
100
120
140
160
180
200
220 Entries 6389
Mean 0.1473± 383.1
RMS 0.1042± 11.76
TDC_Ch5
LargeGEM: TDC Measurement
Gas Mixture: Ar/CO2 70/30. H.V.=-5.25kV, 875uA
Pad Type: Larger Size, VFAT2 MSPL=4clk, Threshold=-40 DAC step
Eth=40ds
MSP L=4clk 2∗ Eth=40ds
MSP L=2clk (lat 11clk lat 18clk)
MSP L = 4clk
MSP L = 2clk
< T DC >
1clk (25ns)= ∆t(SCtrigger F astORtrigger )15clk
t lat t
25ns L ≥ 1031 1
cm2·s
60/20/20
MSP L = 2clk 2clk
th =60ds
MSP L = 2clk
θ
p
η=ln tan θ
2
η→ ∞
Latency [clock cycles = 25ns steps]
10 11 12 13 14 15 16 17 18 19
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 A, th=-60steps]µ[I=859
Latency scan @ Ar-CO2 70/30
MSPL 4clk
MSPL 3clk
MSPL 2clk
MSPL 1clk
Latency [clock cycles = 25ns steps]
10 11 12 13 14 15 16 17 18 19
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 [MSPL 2clk, th -60steps]
Latency scan
AµI = 859
Ar-CO2 70/30
AµI = 892
Ar-CO2-CF4 60/20/20
MSP L =
2clk
70/30
60/20/20
70/30
70/30
π1.25kHz 38kHz
10 ·5mm2
π
10s
60ds
Divider voltage [kV]
4.5 4.6 4.7 4.8 4.9 5
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Variable intensity hadrons
I ~380k c/spill | th -40 DAC steps
I ~380k c/spill | th -60 DAC steps
I ~36k c/spill | th -40 DAC steps
I ~36k c/spill | th -60 DAC steps
I ~12.5k c/spill | th -40 DAC steps
I ~12.5k c/spill | th -60 DAC steps
Divider voltage [kV]
4.5 4.6 4.7 4.8 4.9 5
LG efficiency
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
Variable intensity hadrons
I ~380k c/spill | th -40 DAC steps
I ~380k c/spill | th -60 DAC steps
I ~36k c/spill | th -40 DAC steps
I ~36k c/spill | th -60 DAC steps
I ~12.5k c/spill | th -40 DAC steps
I ~12.5k c/spill | th -60 DAC steps
Divider HV [kV]
4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
beam comparisonµ - π
beam [~38kHz]π150GeV/c
beam [~0.8kHz]µ150GeV/c
Divider current [uA]
750 760 770 780 790 800 810 820 830 840 850 860 870
0.8kHz
38kHz
Chapter 5
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 240.8,tracky[0]->q + 6.3)<6)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
0
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 303.2,tracky[0]->q - 34.4)<7)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 362.9,tracky[0]->q - 34)<8.5)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 362.9,tracky[0]->q + 5.6)<9)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 362.7,tracky[0]->q + 46.9)<9)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 362.8,tracky[0]->q + 86.2)<9)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90
tracky[0].q
0
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 482.6,tracky[0]->q - 34.1)<12)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
0
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 482.6,tracky[0]->q + 6.7)<12)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
0
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 482.7,tracky[0]->q + 86.3)<12)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 663.4,tracky[0]->q - 1.1)<23.5)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 664.9,tracky[0]->q + 108)<30)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 662.5,tracky[0]->q + 207.3)<18)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 483.8,tracky[0]->q + 46.7)<12)}
trackx[0].q
0 10 20 30 40 50 60 70 80 90 100
tracky[0].q
0
10
20
30
40
50
tracky[0].q : trackx[0].q {(trackx@.GetEntries()==1 && tracky@.GetEntries()==1 && trackx[0].chi2<10 && tracky[0].chi2<10 && residualx[0]<10 && residualy[0]<10)&&(dist(GetX(bgch.ch),GetY(bgch.ch),trackx[0]->q - 695.2,tracky[0]->q + 49.3)<19)}
Chamber zones (from A to P)
LG efficiency (%)
0
10
20
30
40
50
60
70
80
90
100
Homogeneity scan
y
Y [mm]
15 20 25 30 35 40 45
LG efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
LG efficiency over GEM foils junction - point C
y
5.40M
(x) = 2
πx
0
et2dt
Q=CV
V < th
VCal [VFAT2 DAC step Bins]
40 60 80 100 120 140 160 180 200
Counts
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
VFAT3 S-Curve
Pad distance from chamber's vertex [mm]
200 300 400 500 600 700
Noise amplitude [VFAT2 DAC steps]
2
4
6
8
10
12
14
16
18
20
S-Curve sigma distribution
VFAT0
VFAT1
VFAT2
VFAT3
VFAT4
VFAT5
VFAT6
QEQ
noise = 400 + 50
pF
QEQ
noise
300 ÷400
σ7
48pF
20mm effrad 30mm
Efficiency radius [mm]
0 10 20 30 40 50 60
LG Efficiency
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
LG efficiency versus efficiency radius
Point A
Point B
Point C
Point D
Point E
Point F
Point G
Point H
Point I
Point L
Point M
Point N
Point O
Point P
HV =5.15kV th =40ds
20mm 35mm
ε=ε(1 ε)
n
n ε
60mm
effrad = 6mm
6mm (99.40 ±0)% 0.5%
7mm (73.35 ±0.11)% 0.01%
8.5mm (74.60 ±0.11)% 0.01%
9mm (94.43 ±0.03)% 0.07%
9mm (96.76 ±0.02)% 0.35%
9mm (85.21 ±0.10)% 0.03%
12mm (74.95 ±0.14)% 0.02%
12mm (93.68 ±0.04)% 0.02%
12mm (97.73 ±0.02)% 0.13%
23.5mm (97.07 ±0.02)% 0.04%
30mm (80.28 ±0.12)% 13.38%
18mm (86.35 ±0.09)% 0.05%
12mm (97.67 ±0.02)% 1.01%
18mm (97.66 ±0.03)% 0.43%
HV =5,15kV th =60ds MSP L = 4clk
Efficiency radius [mm]
0 10 20 30 40 50 60
LG Efficiency (wrong offsets)
-3
10
-2
10
-1
10
1
Noise contribution
HV -4.60kV; TH -40ds
HV -5.25kV; TH -40ds
HV -5.25kV; TH -60ds
LG out-beam efficiency versus efficiency radius
Efficiency radius [mm]
0 10 20 30 40 50 60
LG Efficiency (wrong offsets)
-4
10
-3
10
-2
10
Noise contribution
HV -4.60kV; TH -40ds
HV -5.25kV; TH -40ds
HV -5.25kV; TH -60ds
LG out-beam efficiency versus efficiency radius
χ2<10
<10mm
14
(x, y)
− −
− − − −
− − − −
− −
− −
− −
− − − −
− −
− −
− − − −
− −
− −
− −
− −
(x, y)
Chapter 6
SNR
3,1≤ |η| ≤ 4,7
L ≥ 1031 1
cm2·s
L  1030 1
cm2·s
16 ·64 = 1024
1012 G104
RMS 11.8ns
f75ns
L ≤ 1031
L= 1033
50cm
Appendix A
∗ ∗
∗ ∗
∗ ∗
− −
∗ ∗
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ ∗
− ∗ − ∗
∗ ∗
− −
− −
− −
− −
− −
∗ ∗
∗ ∗
− −
− ∗
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
∗ −
∗ −
∗ −
− −
− −
− ∗
∗ −
− −
− −
− ∗
∗ −
− −
− −
− ∗
∗ −
− −
− −
− ∗
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
∗ −
− −
− −
− −
− −
− −
∗ −
− −
− −
∗ −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
− −
Ed=Et= 3kV
cm
60/20/20
MSP L
100ds
40ds µ
th 40ds
70/30
HV =5.15kV th =40ds
I > 750µA 70/30
HV =5,15kV th =60ds
MSP L = 4clk
η
η
η